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AN APPLICATION OF A GENERALIZED NéMETH

FIXED POINT THEOREM IN HADAMARD

MANIFOLDS

Won Kyu Kim

Abstract. In this paper, as an application of a multivalued gen-
eralization of the Németh fixed point theorem, we will prove a
new existence theorem of Nash equilibrium for a generalized game
G = (Xi;Ai, Pi)i∈I with geodesic convex values in Hadamard man-
ifolds.

1. Introduction

In the last decades, several important concepts of nonlinear analy-
sis have been extended from Euclidean spaces to Riemannian manifold
settings in order to go further in the studies of convex analysis, fixed
point theory, variational problems, and related topics. The motivation
of such studies comes from nonlinear phenomena which require the pres-
ence of a non-convex or non-linear structure for the ambient space; e.g.,
see Kim [4-7], Kristály [8-10], Li et al. [11], Németh [12], Udrişte [14],
and references therein.

In 2003, using the Brouwer fixed point theorem as a proving tool,
Németh [12] first proved a basic fixed point theorem for continuous
maps on a compact geodesic convex subset of a Hadamard manifold,
and he proved the existence of solutions for variational inequalities in
a Hadamard manifold. Since then, using the Németh fixed point the-
orem, several authors investigate various applications of variational in-
equalities, minimax inequalities, and equilibrium problems in Hadamard
manifolds, e.g., see [2,8-11].

In a recent paper [4], the author proved a multivalued generaliza-
tion of the Németh fixed point theorem by replacing the Brouwer fixed
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point theorem for single-valued continuous functions suitably by the Be-
gle fixed point theorem for upper semicontinuous multimaps. And, the
author shows that this result can be a useful multivalued tool for proving
the existence theorem of multivalued nonlinear problems in Hadamard
manifolds as in [6].

In this paper, as an application of a multivalued generalization of the
Németh fixed point theorem, we will prove a new existence theorem of
Nash equilibrium for a generalized game G = (Xi;Ai, Pi)i∈I with geo-
desic convex values in Hadamard manifolds. Also, we give an example
of 2-person game which is suitable for our theorem but the previous
equilibrium existence theorems can not be applied.

2. Preliminaries

We begin with some basic definitions and terminologies on Riemann-
ian manifolds in [2,9,11,14]. Let M be a complete finite dimensional
Riemannian manifold with the Levi-Civita connection ∇ on M . Let
x ∈M and let TxM denote the tangent space at x to M . For x, y ∈M ,
let γx,y : [0, 1] → M be a piecewise smooth curve joining x to y. Then,
a curve γx,y (γ for short) is called a geodesic if γ(0) = x, γ(1) = y,
and ∇γ̇ γ̇ = 0 for all t ∈ [0, 1] (here γ̇ denotes dγ(t)/dt). A geodesic
γx,y : [0, 1] → M joining x to y is minimal if its arc-length equals its
Riemannian distance between x and y. And, M is called a Hadamard
manifold if M is a simply connected complete Riemannian manifold of
non-positive sectional curvature. In a Hadamard manifold, the geodesic
between any two points is unique, and the exponential map at each
point of M is a global diffeomorphism. Therefore all convexities in a
Hadamard manifold as in [10] coincide.

Let I = {1, · · · , n} be a finite index set. For each i ∈ I, if (Mi, gi) be
a finite dimensional Hadamard manifold, then the standard arguments
shows that the product manifold (M,g) of Hadamard manifolds (Mi, gi)
equipped with product geodesic and exponential map is also a finite di-
mensional Hadamard manifold (e.g., see [6,9]). For each i ∈ I, let Xi be
a nonempty geodesic convex subset of a finite dimensional Hadamard
manifold M , and X := Πi∈IXi be a subset of a Hadamard manifold
M which is a product space of M equipped with standard geodesic and
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exponential map. Consequently, X is a geodesic convex set in the prod-
uct manifold M = Πi∈IM endowed with its natural (warped-) product
metric (with the constant weight functions), e.g., see Kristály [9, p.674].

Let X be a nonempty subset of a Riemannian manifold M , we shall
denote by 2X the family of all subsets of X. If T : X → 2M and S :
X → 2M are multimaps (or correspondences), then S ∩ T : X → 2M is
a correspondence defined by (S ∩ T )(x) = S(x) ∩ T (x) for each x ∈ X.
When a multimap T : X → 2X is given, we shall denote T−1(y) := {x ∈
X | y ∈ T (x)} for each y ∈ X. A multimap T has open graph in X if the
graph Gr T := {(x, y) ∈ X×X | x ∈ X and y ∈ T (x)} is open in X×X.
When a multimap Ti : X → 2Xi has open graph in X = Πi∈IXi for each
i ∈ I, and let T : X → 2X be a multimap defined by T (x) := Πi∈ITi(x)
for each x ∈ X, then it is easy to see that the graph of T is open in
X ×X.

Recall the following concept which generalize the convex condition in
linear spaces to Riemannian manifolds:

Definition 2.1. A nonempty subset X of a Riemannian manifold M
is said to be geodesic convex if for any x, y ∈ X, the geodesic joining x
to y is contained in X. For an arbitrary subset C of M , the minimal
geodesic convex subset which contains C is called the geodesic convex
hull of C, and denoted by Gco(C).

Then the above definition of geodesic convex hull in a Riemannian
manifold M overcomes the delicate problems of geodesic convexity re-
marked in [10]. As shown in [2], note that Gco (C) =

⋃∞
n=1Cn, where

C0 = C, and Cn = {z ∈ γx,y | x, y ∈ Cn−1} for each n ∈ N.

If S is geodesic convex, then Gco (S) = S, and the intersection of two
geodesic convex subsets of M is clearly geodesic convex; but the union
of two geodesic convex subsets need not be geodesic convex.

Here, we note that the following operations are essential in proving
the geodesic convexity:

Lemma 2.2. [7] Let X and Y be nonempty subsets of a Hadamard
manifold M , X ∩ Y be nonempty, and Gco (X) and Gco (Y ) be two
geodesic convex hull of X and Y in M , respectively. Then we have

(1) Gco (X) ∩Gco (Y ) is geodesic convex;

(2) Gco (X ∩ Y ) is a geodesic convex subset of Gco (X) ∩Gco (Y );

(3) Gco (X × Y ) is a geodesic convex subset of Gco (X)×Gco (Y ).
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Next, we recall some notions and terminologies on the generalized
Nash equilibrium for pure strategic games as in [2,3,7,13]. Let I =
{1, 2, . . . , n} be a finite (or possibly countable) set of players. For each
i ∈ I, let Xi be a nonempty set of actions. An abstract economy
(or generalized game) G = (Xi, Ai, Pi)i∈I is defined as a family of or-
dered triples (Xi, Ai, Pi) where Xi is a nonempty topological space
(a choice set), Ai : Πj∈I Xj → 2Xi is a constraint correspondence and

Pi : Πj∈I Xj → 2Xi is a preference correspondence. An equilibrium
for G is a point x̂ ∈ X = Πi∈I Xi such that for each i ∈ I, x̂i ∈
Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

As a proving tool for the main result of this paper, a multivalued
generalization of the Németh fixed point theorem for geodesic convex
sets in Hadamard manifolds is as follows:

Lemma 2.3. [4] Let X be a nonempty compact geodesic convex subset
of a Hadamard manifold M , and T : X → 2X be an upper semicon-
tinuous multimap such that T (x) is a nonempty closed geodesic convex
subset of X for each x ∈ X. Then T has a fixed point x̄ ∈ X, that is,
x̄ ∈ T (x̄).

When T : X → 2X is a single-valued function in Lemma 2.3, then
T is clearly continuous and each singleton T (x) is closed and geodesic
convex. As a consequence, Lemma 2.3 reduces to the Németh fixed
point theorem. Indeed, Németh [12] proved for single-valued version by
using the Brouwer fixed point theorem instead of the Begle fixed point
theorem in [4].

The following is well known in nonlinear analysis:

Lemma 2.4. [13] Let X and Y be two topological spaces, A an open
subset of X, and T1, T2 : X → 2Y be upper semicontinuous multimaps
such that T2(x) ⊆ T1(x) for all x ∈ A. Then a multimap T : X → 2X

defined by

T (x) :=

{
T1(x), if x /∈ A;

T2(x), if x ∈ A,
is also an upper semicontinuous multimap.

From now on, let M be a finite dimensional Hadamard manifold, and
X be a nonempty geodesic convex subset of M . For the other standard
notations and terminologies, we shall refer to Colao et al. [2], Kim [4,7],
Kristály [8,9], Németh [12], and the references therein.
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3. Equilibrium existence theorem for a generalized game

As an application of Lemma 2.3, we shall prove a new equilibrium
existence theorem for a generalized game having geodesic convex values
in a Hadamard manifold as follow:

Theorem 3.1. Let G = (Xi, Ai, Pi)i∈I be a generalized game where I
is a finite (possibly countable) set of agents such that for each i ∈ I,

(1) Xi is a nonempty compact geodesic convex subset of a Hadamard
manifold M , and X := Πi∈IXi;

(2) Ai : X → 2Xi be an upper semicontinuous multimap such that
Ai(x) is a nonempty closed and geodesic convex subset of X for each
x ∈ X;

(3) Pi : X → 2Xi be a multimap satisfies the irreflexivity, i.e., xi /∈
Pi(x) for each x ∈ X;

(4) Ai ∩ Pi : X → 2Xi be an upper semicontinuous multimap such
that (Ai∩Pi)(x) is a (possibly empty) closed and geodesic convex subset
of X for each x ∈ X;

(5) the set Wi := {x ∈ X | (Ai ∩ Pi)(x) 6= ∅} is (possibly empty)
open.

Then G has an equilibrium choice x̂ ∈ X, that is, for each i ∈ I,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Proof. First, suppose that Wi = ∅ for all i ∈ I. We define a multimap
A : X → 2X by

A(x) := Πi∈I Ai(x) for each x ∈ X.

Then, by the assumption (2), A is an upper semicontinuous multimap
such that A(x) is a nonempty closed and geodesic convex subset of X
for each x ∈ X. Therefore, by Lemma 2.3, there exists a fixed point
x̂ ∈ X for A, that is, for each i ∈ I, x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅
which completes the proof.

Next, suppose that Io is a nonempty maximal subset of I such that
Wi is nonempty for each i ∈ Io. For each i ∈ Io, we define a multimap
φi : X → 2Xi by

φi(x) =

{
(Ai ∩ Pi)(x), if x ∈Wi;

Ai(x), if x /∈Wi.

Then, for each i ∈ Io, by the assumptions (2) and (4), we have φi(x)
is a nonempty closed and geodesic convex subset of Xi for each x ∈ X.
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Since (Ai ∩ Pi)(x) ⊆ Ai(x) for each x ∈ X, and Wi is open, by Lemma
2.4, φi is also upper semicontinuous.

Finally, we define a multimap Φ : X → 2X by

Φ(x) := Πi∈I φ
′
i(x) for each x ∈ X,

where φ′i : X → 2Xi is defined by

φ′i(x) =

{
φi(x), if i ∈ Io;
Ai(x), if i /∈ Io.

Then, Φ : X → 2X is an upper semicontinuous such that Φ(x) is a
nonempty closed and geodesic convex subset of X for each x ∈ X.
Therefore, the multimap Φ : X → 2X satisfies the whole assumptions of
Lemma 2.3 so that there exists a fixed point x̂ ∈ X such that x̂ ∈ Φ(x̂),
that is, x̂i ∈ φ′i(x̂) for each i ∈ I.

Next, we shall check the two cases. Indeed, for each i ∈ Io, x̂i ∈
φ′i(x̂) = φi(x̂). If x̂ ∈Wi, then we have

x̂i ∈ φi(x̂) = (Ai ∩ Pi)(x̂) ⊆ Pi(x̂)

which contradicts the irreflexivity assumption (3). Therefore, whenever
i ∈ Io, we should have x̂ /∈Wi so that

x̂i ∈ φ′i(x̂) = φi(x̂) = Ai(x̂) and (Ai ∩ Pi)(x̂) = ∅.
In case of i /∈ Io, we have Wi = ∅ so that (Ai ∩ Pi)(x̂) = ∅, and
x̂i ∈ φ′i(x̂) = Ai(x̂). Therefore, in either cases, we have that for each
i ∈ I,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅
so that x̂ ∈ X is an equilibrium choice for the game G. This completes
the proof.

Remark 3.2. For each i ∈ I, when Pi(x) is empty for each x ∈ X, then
the assumptions (3)-(5) of Theorem 3.1 are automatically satisfied so
that the equilibrium point x̂ ∈ X is a fixed point for Ai for each i ∈ I.
In this case, we can obtain Theorem 3.1 as a multivalued generalization
of the Németh fixed point theorem for geodesic convex sets in Hadamard
manifold.

It is well known that when a subset of n-dimensional Euclidean space
with its usual flat metric is geodesic convex if and only if it is convex
in the usual sense, and similarly for functions. Thus, by replacing the
Fan-Glicksberg fixed point theorem instead of Lemma 2.3 in the proof of
Theorem 3.1, we can obtain the following equilibrium existence theorem
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for a generalized game in locally convex Hausdorff topological vector
space setting:

Theorem 3.3. Let G = (Xi, Ai, Pi)i∈I be a generalized game where I
is a finite (possibly countable) set of agents such that for each i ∈ I,

(1) Xi is a nonempty compact convex subset of a locally convex
Hausdorff topological vector space M , and X := Πi∈IXi;

(2) Ai : X → 2Xi be an upper semicontinuous multimap such that
Ai(x) is a nonempty closed and convex subset of X for each x ∈ X;

(3) Pi : X → 2Xi be a multimap satisfies the irreflexivity, i.e., xi /∈
Pi(x) for each x ∈ X;

(4) Ai ∩ Pi : X → 2Xi be an upper semicontinuous multimap such
that (Ai ∩ Pi)(x) is a (possibly empty) closed convex subset of X for
each x ∈ X;

(5) the set Wi := {x ∈ X | (Ai ∩ Pi)(x) 6= ∅} is (possibly empty)
open.

Then the game G has an equilibrium choice x̂ ∈ X, that is, for each
i ∈ I,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.
Finally, we give an example of a non-convex 2-person game which is

suitable for Theorem 3.1, but the previous equilibrium existence theo-
rems in Ding-Kim-Tan [3] and Tan-Yuan [13] for compact games can not
be applied:

Example 3.4. Let G = (Xi;Ai, Pi)i∈I be a non-convex generalized
game such that for each player i ∈ {1, 2}, the pure strategic space Xi is
defined by

X1 := {(x1, x2) ∈ R2 | 0 ≤ x1, x2 ≤ 1};
X2 := {(cos t, sin t) ∈ R2 | 0 ≤ t ≤ π}.

Then, X1 is a compact (geodesic) convex subset of R2 in the usual sense,
and X2 is compact but not a convex subset of R2 in the usual sense.
However, as remarked in [9], if we consider the Poincaré upper-plane
model (H2, gH), then the set X2 is geodesic convex with respect to the
metric gH being the image of a geodesic segment from (H2, gH).

For each player i = 1, 2, the multimaps Ai : X = X1 ×X2 → 2Xi

and Pi : X → 2Xi are defined as follows:
For each

(
(x1, x2), (y1, y2)

)
∈ X,

A1

(
(x1, x2), (y1, y2)

)
:=

{{
(x̄1, x̄2) ∈ X1 | x̄1 ≤ x1

}
, if x1 6= 0;

X1, if x1 = 0;
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A2

(
(x1, x2), (y1, y2)

)
:=

{{
(ȳ1, ȳ2) ∈ X2 | ȳ1 ≤ y1

}
, if y1 6= −1;

X2, if y1 = −1;

P1

(
(x1, x2), (y1, y2)

)
:=

{{
(x̄1, x̄2) ∈ X1 | x̄1 > x1

}
, if x1 6= 0;

∅, if x1 = 0;

P2

(
(x1, x2), (y1, y2)

)
:=

{{
(ȳ1, ȳ2) ∈ X2 | ȳ1 > y1

}
, if y1 6= −1;

∅, if y1 = −1.

Then, it is clear that for each i = 1, 2 and
(
(x1, x2), (y1, y2)

)
∈ X,

Ai
(
(x1, x2), (y1, y2)

)
are nonempty closed and geodesic convex subsets of

Xi, and (x1, x2) /∈ P1

(
(x1, x2), (y1, y2)

)
and (y1, y2) /∈ P2

(
(x1, x2), (y1, y2)

)
.

Therefore, the assumptions (1)-(3) of Theorem 3.1 are satisfied. In order
to apply Theorem 3.1 to the game G, it remains to show the assump-
tions (4) and (5) of Theorem 3.1. Indeed, the set W1 = {x ∈ X | (A1 ∩
P1)(x) 6= ∅} is empty, and the set W2 = {x ∈ X | (A2 ∩ P2)(x) 6= ∅}
is also empty; thus the assumptions (4) and (5) of Theorem 3.1 is au-
tomatically satisfied. Therefore, all the assumptions of Theorem 3.1 for
the generalized game G are satisfied so that we can obtain an equilib-
rium point

(
(0, 1), (−1, 0)

)
∈ X = X1 × X2 for the generalized game

G = (Xi;Ai, Pi)i∈I such that for each i = 1, 2,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅; that is ,

(0, 1) ∈ A1

(
(0, 1), (−1, 0)

)
and (A1 ∩ P1)

(
(0, 1), (−1, 0)

)
= ∅;

(−1, 0) ∈ A2

(
(0, 1), (−1, 0)

)
and (A2 ∩ P2)

(
(0, 1), (−1, 0)

)
= ∅.
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